

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

494

Database accessing middleware based on factory pattern and
strategy pattern

Zhaohui Li1, Hongxia Yang2*
1Transportation Management College, Dalian Maritime University, Dalian 116026, Liaoning, China

2Schoos of Management, Liaoning Normal University, Dalian 116029, Liaoning, China

Received 1 June 2014, www.cmnt.lv

Abstract

On the detail discussion of database accessing technology, this paper puts forward a database accessing middleware with combination

of factory pattern and strategy pattern, and applying this database accessing middleware in the construction of a deli network trades

platform. The actual application shows that this proposed middleware contributes to simplification of code fragment. Moreover, it

enhances system extensibility and maintainability through the Factory and Strategy design pattern, and makes data processing more
flexible, easier to modify and reuse.

Keywords: database accessing middleware, trading platform, factory pattern, strategy pattern

1 Introduction

Traditional database access is more mature in technology,

but there are also the following two questions: one is

inconvenient to transplant in heterogeneous databases; the

other is using complex, so its requirements is high for

programmers [1]. Therefore, interface technology is

widely applied in the database access technology, such as

Hibernate. Hibernate is an open source object relation

mapping framework, which is a very lightweight object

encapsulation. It mainly use Hibernate API to access

database, on the other hand, Struts use the JDBC to access

the database [2]. The combination of Hibernate with

Struts2 needs to add a middleware.

Currently, the main technologies about database

middleware are to modify the XML configuration file, and

get the components according to the component ID in the

XML file. If the system contains a large number of ID

components, it will be complex. Through detailed analysis

of database accessing processes, we found that there are

mainly two kinds of solutions to solve the different data

sources. One is to use middleware, and other is to use XML

DTD or RDF as a model [3]. According to the specific

environment, this paper designs and implements a

database access middleware based on factory pattern and

strategy pattern to make data accessing interface easily to

modify and adapt.

2 Background

Dalian Deli Trading Centre is the key livelihood project

established by Dalian Municipal Government in 1998, and

also the carrier to start up food safety project. It

implements “Market links together with supply place”,

“Market links together with supply factory”, established

strict market access system, certificate and invoice

requiring system, inspection and test system and product

quality traceability system, which effectively ensures the

food quality safety. The Cooked Foods Trading system is

based on the combination of Struts2 and Hibernate, as

shown in Figure 1. There are huge amounts of trading data

need to be stored in database.

ActionServelet ActionForm

Action

Web

Browser

Struts Controllor

request

response Jsp

Hibernate

HibernateDAO

Hql

DB

DatabaseViewer

FIGURE 1 Application structure of Dalian cooked foods trading centre

* Corresponding author’s e-mail: yhxseasky@163.com

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

495

In the system, many business entity objects are often

used as memory objects. Some of operations save store the

business entity object to the database, others transmit the

data from the database to control layer. As shown in

Figure 2, each Action identified in struts-config.xml, and

Action class implements a portion of a Web application

and returns an object, when the user queries various coding

tables, it has to be built a DAO (Data Access Object) to

call the method, at the same time, some operations also

need create code lists DAO.

The query process is easy to make mistakes because of

overmuch coding tables and the corresponding coding

table data access objects. But all the operations are

database query operations which return a domain object

after querying. Moreover, there are very little attributes in

the coding tables, and most of the query process is similar.

According to the above reasons, this paper puts forward

the coding tables DAO get together through middleware

technology, optimizing the inquiring process, improving

system expansibility.

Action

Jsp

CodeDepartmentQuery

Find()

request

CodeDepartmentDAO

Res
ult

se
t

Result set

Result set

DAO

new

CodeDepartmentAdd CodeDepartmentDAOnew

CodeDepartmentDelete CodeDepartmentDAOnew

…… …… ……

FIGURE 2 Traditional query process

3 Design of database accessing middleware

Middleware is an application program interface, it is also

an expandable code stored in servers in the network system.

It has the function to provide connectivity between

application client and database server, which make

programmer avoid various communication protocols and

interfaces. Because the middleware is standard

programming interface and protocol, data sharing and data

manipulation can be achieved in different hardware and

operating system platforms. According to the different

function [4, 5], middleware can be divided into four

categories: Database Access middleware, Message

Oriented Middleware, Transaction Processing Middleware

and Object-oriented middleware

Among the Object-oriented technology, encapsulation

and inheritance of object can provide a very good

foundation for software reusability, object-oriented

transparency also meet to the requirement of middleware

technology, so object-oriented middleware technology

have developed rapidly. Its basic idea is to provide a

unified interface among objects that is the middleware,

which makes the objects calling and data sharing do not to

concern with the position of the object, language and the

resident operating system, but unified treatment by the

interface (middleware) [6, 7].

This paper puts forward a database access middleware

between Action and DAO. The main role is to package the

function and provide the interface for users to query. The

variable should follow the interface that is defined by

abstract classes, not statements it as specific class instance.

As long as the users know the interface, users don't know

the specific type of using object, manipulating objects is

according to the interface of the abstract class definition.

The users only know which abstract class defines

interfaces, without concerning the system how to achieve,

and it can greatly reduce interdependence among the

subsystems. In order to make the middleware play the real

effect, and achieve the real decoupling between Action and

DAO layer. Package selecting and creating objects in the

middleware, which is not directly in the Action. So Action

just needs to call the interface layer. As for middleware,

Action need not know how to choose, how to create. And

for the data access layer Hibernate, it does not change.

This design pattern can make two frames to transfer

data as much as possible, but not to know each other's

existence, and carry out their duties. The display layer JSF

simply do know by Hibernate persistence layer system is

responsible for the display layer for Hibernate, JSF

framework also unimportant. In an integrated system, the

transparency between the various frameworks determines

the system modifications convenience.

The core function of middleware is focused on the core

class. Core class is to realize the selection and creating of

object, and then it calls the specific class to query. Since

there are multiple coding tables exist in the specific class,

it will abstract a class through inheritance and rewriting

methods. For the behaviour of creating, it is based on the

parameters that JSP page sends to the Action, and then

creates objects. If it need increase new objects, which only

need expand interface layer, add new objects in it. For the

called method, if need to increase, it can also add them in

abstract classes. And then it completes to rewrite in the

specific class. The application structure is as showed in

Figure 3.

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

496

Middle

Action

jsp

ssp

+orderDao()

DAOStore

+createCode()

DaoFactory

+findByCode()

+findByCodeId()

CodeDAO

HTT Prequest

parameters

Trun to Action

DAO

Hibernate

HibernateStruts Middle DAO

FIGURE 3. Structure of Database Accessing Middleware

3.1 APPLICATION OF FACTORY PATTERN

The factory pattern refers to two distinct design patterns,

both first described by the “Gang of Four” [8]. The

“abstract factory” pattern provides an interface with which

a client can obtain instances of classes conforming to a

particular interface or protocol without having to know

precisely what class they are obtaining. This has

advantages for encapsulation and code reuse, since

implementations can be modified without necessitating

any changes to client code. Factories can also be used to

closely manage the allocation and initialization process,

since a factory need not necessarily allocate a new object

each time it is asked for one. To obtain an instance, a

programmer would first obtain a reference to one of the

hidden factory subclasses, usually through a factory

method in the abstract factory superclass, and then use that

reference to create an object of the product type. The

“factory method” pattern is related but simpler: like the

abstract factory pattern, the factory method pattern allows

a client to obtain objects of an unknown class that

implement a particular interface. Rather than relying on a

separate factory class to create instances of the product

classes, the product class itself has a factory method that

returns an object that conforms to the interface defined by

that class. Typically, a class implementing a factory

method pattern would be an abstract class with several

concrete subclasses [9].

The class diagram of Database Accessing Middleware

is as shown in Figure 4. The factory pattern provides an

interface to create different instances of objects; these

objects do not need to develop specific class. It obtains a

special class, which is responsible for instantiating a

specific object. Usually the class called factory class,

which encapsulates the related object's constructor logic,

separates subclass object constructor definition, and makes

the maintainability of software product greatly enhanced.

The user does not need to know how would they do, only

need to know the interface.

The factory pattern is equivalent to create instances of

objects of the new, it often creates the instance object

according to Class, such as A a=new A(). Factory pattern

is used to create an instance object, that is a common

pattern for creation of polymorphic objects of different

concrete types so when creating many objects, the paper

considers to use the factory pattern, although doing so

many more work, but gives a system to bring greater

extensibility and to minimize the amount of modification.

As shown in Figure 4, DAOStore class function as data

access interface, it provides the definition for object and

query processing. But creating object is achieved by

DaoFactory class, and querying is achieved by CodeDAO

class (an abstract class defined many methods to rewrite)

and its subclasses. The createCode method of DaoFactory

class used parameters which are transmitted by JSP to

determine and create corresponding data access object, and

then return query result through CodeDAO method. By

means of this query processing, external object can achieve

data access objects via creating instance of DAOStore

class, and code errors can be reduces through object

encapsulation. This separation of specific classes not only

help the users to access the database through the unified

interface provided by the abstract factory, but also help the

users to access among different tables. If the users want to

increase coding tables, what would do is just to add an

object class in DaoFactory class.

3.2 APPLICATION OF STRATEGY PATTERN

The Strategy pattern enables the use and interchange of

different algorithms or implementations for a certain

policy. It prescribes the definition of an abstract type

(abstract class or interface), representing the policy

contract (Strategy), and a series of different concrete

subtypes (Concrete Strategies) that correspond to

alternative implementations of the policy [8]. On the other

hand, the State design pattern allows an object to alter its

behaviour as a result of changes to its state. The object

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

497

(instance of the Context class) appears to its clients as

changing its class at runtime. The State pattern’s

realization is based on the introduction of an abstract type

(usually abstract class) that represents an Abstract State

and defines methods corresponding to state-dependent

operations of the Context class. Each discrete Context state

is mapped to a concrete subtype of Abstract State

(Concrete State) that provides the state-specific

implementation of Abstract State’s methods and controls

transitions to appropriate target states [10].

The query method of coding tables is very similar, they

are all realized query processes through one or more

attributes. If these query processes are implemented by a

series instances of Action object. This would not be able

to reach the complete encapsulation of middleware. So as

to encapsulate specific method, it would be needed to

abstract the specific method to be a class. On the other

hand, if these specific methods are defined in CodeDAO

class, the CodeDAO class would be more complex and

burden too much. Aiming to these application

requirements, the strategy pattern should be adopted to

realize the real separation of functions, and then to realize

the maintainability, expansibility and reusability of

system. Through the strategy factory, the query processes

of coding tables are encapsulated, and algorithms of query

processes can be replaced each other. Thus, the

replacement of algorithms would not influence the users.

As showed in Figure 4, this strategy pattern has three

parts. The first is Context role. It is named DAOStore

class, which holds specific applications for the users. The

second is abstract strategy role. It is named CodeDAO,

which usually is implemented by an interface or abstract

class and give the requirement interfaces of all concrete

strategy classes. The third is concrete strategy. It

encapsulated algorithms and methods, which includes

CodeStorageTypeDAO, CodeTestResultDAO, Code-

DepartmentDAO, CodePruductMajorDAO, CodeProduct

-MinorDAO and so on. A series of alternative algorithms

and methods are defined in CodeDAO class. Then all the

DAO which implement specific coding tables inherited

from CodeDAO class, and inheritance contribute to

abstract public functions of these algorithms. Through

different numbers of parameters, methods can be

overwritten, and the subclasses decide which method is

chosen. At the same time, all algorithms are classified. The

classes derived from CodeDAO define and implement

various kinds of algorithms and methods. Through

inheritance and derivation, the public method is abstracted

and defined, at the same time, various kinds of algorithms

and methods are encapsulated in the strategy factory.

Consequently, the choosing of algorithms and methods are

independence from the changing requirements, which

contributes to the difficult problems of program

modification.

+orderDao()

-CodeDAO

DAOStore

+createCode()

DaoFactory

+findByCode()

+findByCodeId()

CodeDAO

+findByCode()

CodeDepartmentDAO

+findByCode()

TblTenantTypeDAO

+findByCode()

CodeOrderStatusDAO

+findByCodeId()

CodeProductMajorClassDAO

+findByCode()

CodeTestResultDAO

+findByCodeI()

TblBoothDAO

+findByCode()

CodeStorageTypeDAOSpecific decision classes

+findByCodeId()

CodeProductMinorClassDAO

Factory Pattern Strategy Pattern

FIGURE 4 Class diagram of database accessing middleware

4 Design of database accessing middleware

In the Deli Trading system, the main operation is to access

the database. After using the middleware, when querying

a coding table, the user can create the DAOStore object in

QueryAction class firstly, and then use the created object

to call methods. For example, when querying the

department's code table, the code fragment in

CodeDepartmentQuery is as following in Figure 5.

FIGURE 5 Illustration of CodeDepartmentQuery in a code fragment

DAOStore class is the interface of Action. A

DAOStore object can be created in QueryAction, and this

interface can be implemented the public method

 DAOStore dao=new DAOStore(null);

List<CodeDepartment>codeDeptList=new

ArrayList<CodeDepartment>();

CodeDeptList=(List<CodeDepartment>)dao.order

Dao(department,departmentId);

http://dict.youdao.com/w/expansibility/

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

498

orederDao(). This orderDao() method usually has two

parameters. One is the value transmitted by JSP page, the

other is the attribute ID in database table. Subsequently, a

specific object will be created by method createCode() in

DaoFactory class, and then invoking query method in

CodeDAO class to achieve record set which typed List.

The code fragment in DAOStore class is as following in

Figure 6.

FIGURE 6 Illustration of DAOStore in a code fragment

This application pattern separates object instantiated of

specific coding table out and put it inside the factory class.

The specific object is created by the createCode() method

in DAOFactory class. This process aims to increase code

flexibility. A series of algorithms and methods are defined

in abstract CodeDAO class. These algorithms and methods

are the channel of database querying. If the programmer

needs to add a new query method, it should be added in the

CodeDAO class directly, and then overwrite this method

in the inherited class. This improves the extensibility of

application system.

The process of applying this Database Accessing

Middleware in the Deli Trading system is as shown in

Figure 7. For Hibernate and Struts2 based system, this

paper proposes a new solution of applying middleware to

integrate the Struts2 and Hibernate, instead of re-adding a

Spring Framework. Accordingly, it is adopted that using

factory pattern to implement business logic processing.

Through the Database Accessing Middleware, objects are

encapsulated in the middleware, which provides better

decoupling. At the same time, the strategy pattern is

adopted to improve extensibility.

+orderDao()

-department

-departmentId

-codeDeptList

CodeDepartmentQuery

jsp

HTTP request

parameters

department,

departmentId

codeDeptList

+createCode()

+createByCode()

-departmentId

-department

-codedao

-factory

DAOStore

+DaoFactory()

-department

-code

DaoFactory

+findByCode()

-departmentId

CodedepartmentDAO

Return codedao

Through parameter

departmentId to query

database

Return query

results List

Create DAOStore

object

Through parameter department

Create object

FIGURE 7 Process of applying database accessing middleware

5 Conclusions

With the gradual mature of the framework technology and

object oriented technology, it is important to consider how

to use the optimal design idea to complete the internal

structure of the system, which will makes it easy to adapt

code modification, method extension and polymorphism.

Middleware has been proved successful in assisting

distributed application development, making development

process faster and easier and significantly enhancing

software reuse. Considering the above factors, this paper

designs and implements a Database Accessing

Middleware based on factory and strategy design pattern.

This Database Accessing Middleware can adopt different

framework according to different application systems.

Through applying design pattern into the code fragment, it

contributes to development maintainable, expandable,

reusable and flexible code fragment.

Acknowledgments

This work was supported by the Fundamental Research

Funds for the Central Universities (Grant No. 3132014307

and Grant No. 3132014081)

References

[1] Llopis M, Ferrández A 2013 How to make a natural language

interface to query databases accessible to everyone: An example
Computer Standards and Interfaces 35(5) 470-81

[2] Li Dan, Liu Lihua 2014 Design of LWMS based on Struts and

Hibernate Lecture Notes in Electrical Engineering (4) 113-9

[3] Abd El-Aziz A A, Kannan A 2012 Storing XML rules in relational

storage of XML DTD Proceedings of the 2nd International
Conference on Computational Science, Engineering and Information

Coimbatore India 408-12

 public DAOStore(DaoFactory factory){

this.factory=factory; }

public List orderDao(String type,String id){

CodeDAO codedao = null;

factory=new DaoFactory();

codedao=factory.createCode(type);

List list=codedao.findByCode(id);

return list;

}…….

DAOStore dao=new DAOStore(null);

List<CodeDepartment>codeDeptList=new

ArrayList<CodeDepartment>();

CodeDeptList=(List<CodeDepartment>)dao.order

Dao(department,departmentId);

http://www.engineeringvillage.com/search/submit.url?CID=quickSearchCitationFormat&csrfSyncToken=&searchtype=Quick&searchWord1=%7bKannan%2C+A.%7d§ion1=AU&database=49153&yearselect=yearrange&sort=yr

COMPUTER MODELLING & NEW TECHNOLOGIES 2014 18(12B) 494-499 Li Zhaohui, Yang Hongxia

499

[4] Fisteus J A, Norberto F, Fernández L S, Fuentes-Lorenzo D 2014

Ztreamy: A middleware for publishing semantic streams on the Web

Journal of Web Semantics 25 16-23
[5] Ajana M E, Harroud H, Boulmalf M, Elkoutbi M 2011 FlexRFID

middleware in the supply chain: Strategic values and challenges

International Journal of Mobile Computing and Multimedia
Communications 3(2) 19-32

[6] Huang J, Dong H, Cai Z, Wu Q 2012 Research on a Novel Multi-

database Middleware for Multiple Applications Journal of
Convergence Information Technology 7(19) 250-7

[7] Li Q, Zhou M 2010 The Future-Oriented Middleware Technology

Journal Of Computers 5(2) 655-9

[8] Gamma E, Helm R, Johnson R, Vlissides J 1995 Design Patterns:
Elements of Reusable Object-Oriented Software Addison-Wesley

Longman Publishing Co Inc. Boston

[9] Ellis B, Stylos J, Myers B 2007 The Factory Pattern in API Design:
A Usability Evaluation 29th International Conference on Software

Engineering Minneapolis MN United states 302-11

[10] Christopoulou A, Giakoumakis E A, Zafeiris V E, Soukara V 2012
Automated refactoring to the Strategy design pattern Information

and Software Technology 54(6) 1202-14

Authors

Zhaohui Li, 04.04.1974, China.

Current position, grades: associate professor at Transportation Management College, Dalian Maritime University, China.
University studies: PhD degree in management science and engineering from Dalian University of Technology, China in 2005.
Scientific interest: information system and software component technology.

Hongxia Yang, 12.13.1972, China.

Current position, grades: lecturer at School of Management, Liaoning Normal University, China.
University studies: Master degree in Control Engineering from Dalian University of Technology, China in 2004.
Scientific interest: E-Business, information system and logistics control engineering.

